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We determine the zero-temperature properties of a one-dimensional lattice gas 
of particles that interact via a nearest neighbor exclusion potential and are sub- 
ject to a random external field. The model is a special limiting case of the ran- 
dom field Ising chain. We calculate ( l )  the energy and density of the ground 
state as well as the local energy-density correlation and (2) the pair correlation 
function. The latter calculation gives access to all higher order correlations. The 
structure factor is shown to be a squared Lorentzian. We also compare the 
ground state to the quenched state obtained by sequentially filling the lowest 
available energy levels. 
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1. I N T R O D U C T I O N  

Magnetic lattice models in random external fields have been the subject of 
many investigations. Even for the simplest of these models, the random 
field Ising chain, results are usually limited to the free energy and other 
thermodynamic quantities. Here we study a special limiting case of a 
random field Ising chain for which, at zero temperature, the full set of 
correlation functions can be determined. The model is most naturally 
phrased in the language of a lattice gas. 

We consider a one-dimensional lattice of N sites, k = 1, 2 ..... N. With 
each site k is associated a (negative) random potential - e k ,  as well as a 
binary variable ak, which is such that a~ = 0 corresponds to the presence 
and ak = 1 to the absence of a particle at k. The particles interact via a 
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nearest neighbor exclusion potential. Hence the Hamiltonian ~ of the 
system is 

N 

O f = -  ~ Sk6~k,O (1.1) 
k = l  

and configuration space consists of all (al ,  a2,.,., aN) satisfying 
( 1 - - a k ) ( 1 - - a t + l ) = 0  for k =  l, 2,..., N -  l. We shall take the et to be 
independent random variables identically distributed according to 

f0, et < 0 p(et)  e - ~k, sk >~ 0 (1.2) 
L 

This model therefore has no free parameters. It can be obtained as a 
limiting case of the standard Ising chain in a random external field with 
Hamiltonian 

N - - 1  N 

Z Z Ht t (1.3) 
k = l  k = l  

in which the s t  take the values _+ 1. If one sets st----1-2ak and takes 
the limit J - + - o o  (extreme antiferromagnetism) while keeping the 
distributions of 

st  --- 2Hk -- 4 J +  2J(6t,  1 + (~k,U) (1.4) 

fixed, one recovers (apart from an infinite constant) the H amiltonian (1.1) 
together with the condition of nearest neighbor exclusion. 

The free energy of the Ising chain (1.3) has been studied in detail by 
Nieuwenhuizen and Luck (1) for a variety of distributions of the random 
field Hr.  All distributions considered by these authors are combinations of 
exponential and delta functions, and the distribution (1.2) is again obtained 
in a special limit (not included in their treatment). Nieuwenhuizen and 
Luck present expressions for the free energy at all finite temperatures and 
obtain the zero-temperature energy and entropy in closed form. Their 
method (see also Nieuwenhuizen (2)) amounts to replacing the relevant 
integral equations by three-term recursion relations with nonrandom 
coefficients. 

Even in one-dimensional random systems for which one can calculate 
the free energy, the evaluation of the pair correlation function is usually not 
feasible. An exception is provided by Grinstein and Mukamel, (3) who 
consider the Ising Hamiltonian (1.3) with a random field Hk having the 
particular distribution 

l 
+ ~ with probability p/2 

Hk = 0 with probability 1 - p (1.5) 

- ~ with probability p/2 
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where p is a parameter in the interval [0, 1 ]. They find that the correlation 
function (sksl) (where ( - . . )  is a thermal average and the overbar denotes 
averaging with respect to the randomness) behaves as 

(sksl) --- (A I k -  II + B) e ~r~ tl, [ k -  II ~ oe (1.6) 

in which A, B, and ~c are temperature-dependent constants. This behavior is 
distinctly different from the purely exponential decay laws that are the 
general rule for uniform one-dimensional systems with short-range inter- 
actions. It leads to a structure factor that is the sum of a Lorentzian and 
the square of a Lorentzian. Squared-Lorentzian type contributions to the 
correlation function are also found in mean-field theory (see Ref. 7). 

In this work we limit ourselves to the distribution (1.2) and consider 
only the zero-temperature properties of the Hamiltonian (1.1). We extend, 
however, our calculations beyond the evaluation of the ground-state energy 
(Section2) and of the particle density (Section3.1). In Section3.2 we 
derive the correlation between the energy and the occupation probability of 
a single site. In Section 4 we derive a fully explicit expression for the pair 
correlation function. In Section 5, finally, we introduce a kinetics for the 
system consisting in sequentially adding particles to the lowest available 
energy levels, until the nearest neighbor exclusion no longer allows the 
addition of any further particles. With the aid of results by Widom, (4) we 
calculate some of the properties of the quenched state thus obtained, and 
compare them to those of the ground state. 

In Sections 2~4 our technique is the integral equation method com- 
mon in the study of products of random matrices (its best known 
application in statistical mechanics probably is the study by McCoy and 
Wu (5) of the two-dimensional Ising model with uniaxially correlated ran- 
domness). The calculation of the ground-state energy leads to an integral 
recursion relation [Eq. (2.5)] for a sequence of functions Pl(c~), P2(~) .... of 
one variable, whereas the calculation of the pair correlation function 
requires the solution of an integral recursion relation [Eq. (4.15)] for a 
sequence of functions QI(~, fi, 7), Q2( cz, fi, 7) .... of three variables. We solve 
both recursions exactly. The determination of an arbitrary p-particle 
correlation function then merely amounts to the evaluation of a multiple 
integral of a product involving p - 1 functions Qn; the answer can again be 
given in closed form. All calculations of Sections 2-4 are for finite chains of 
N sites, which allows us to analyze the boundary and finite-size effects. 

We summarize a few of our results. In the thermodynamic limit 
N-~ oe the average ground-state particle density pG and the average 
ground-state energy per site e ~ take the values 

e Q = 4/9 (1.7b) 

e ~ = -2 /3  (1.7b) 
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These values may be compared to those for a densely packed chain, i.e., for 
a configuration (al, ,  02, 0-3, 0-4,-.. = (1, 0, 1, 0,...), namely 

pl010... 1 (1.8b) 

~ 

e l ~  - de ee ~ = - �89 (1.8b) 

Obviously the lower density of the ground state leads to a much better 
result for the energy. The results for the quenched state studied in 
Section 5, however, approach those for the ground state very closely. One 

pQ = �89 - e-2)  = 0.4323... (1.9a) 

e Q = d x  e - z ~  log x = -0.6596.. .  (1.9b) 

The result (1.9a) is due to Widom (4/and is independent of the distribution 
p(E). 

For the average particle particle correlation function g O ( m )  between 
two sites a distance m apart and deep in the bulk we obtain 

gG(m) = + ~ i - - -  - -  2J  ' m = 0 ,  1, 2 .... (1.10) 

This is of the form (1.6); moreover, the corresponding structure factor, 
given in Section 4, is a pure Lorentzian-squared! The surprising feature is 
that whereas Grinstein and Mukamel (3) find that the coefficient of the 
squared Lorentzian vanishes at zero temperature, in our model it is the 
only term present. 

2. GROUND-STATE ENERGY 

The calculation of the average free energy of a random lattice system is 
equivalent to the evaluation of a product of random transfer matrices. This 
problem can in turn be converted into an integral recursion relation. At 
zero temperature usually several of the ratios between the matrix elements 
of the transfer matrix vanish or become infinite, but in a slightly modified 
manner an integral recursion relation can nevertheless be derived. This will 
be shown below for the model defined by (1.1) and (1.2). 

We consider for a given lattice site k the two quantities E~, a = 0, 1, 
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defined as the minimum energy of the first k sites of the chain given that 
cr~ = a. Explicitly, 

k- - I  ) 

E~= min - ~" ej6oj,o-e~6o,o , k =  1,..., N (2.1) 
(al ,..., a k -  1 ) j = 1 

where the minimum is on all (al ..... crk_l) such that (a~,...,a~ , ,c  r) 
satisfies the nearest neighbor exclusion principle. Since the E~ depend on 
the random energy levels, they are also stochastic variables. By checking 
the various cases, one easily verifies that the Eg satisfy the recusion relation 

E)~ +~ = min(E~, E ~ (2.2a) 

E ~ = -e~+,  + E  l,  k =  1, 2,..., N -  1 (2.2b) 

with initial condition E l = 0, E ~ = - e l .  Upon subtracting these equations 
and defining 

~k 1 0 = E ~ - E k ,  k = 1 , 2  ..... N (2.3) 

one finds that the ~k satisfy the one-variable recursion relation 

~k+, = ek+ ~ + min(0, - ~ ) ,  k = 1, 2,..., N -  1 (2.4) 

with initial condition ~, = el. 
We shall denote by Pk the probability distribution of the variable ~k- 

The recursion relation (2.4) immediately allows us to write down an 
expression for Pk+ ~ in terms of Pk, namely 

f 
:3c 

P~+ 1(~) = d~'Pk(~') 

f 
~ 

x d e p ( e ) 6 ( e + m i n ( O , - ~ ' ) - ~ ) ,  k =  1, 2,..., N -  ! (2.5) 
co 

The useful identity 

3(x + rain(0, - y ) )  = 6(x) O ( - y )  + 6(x - y) O(y) (2.6) 

where 

{~ for y < 0  (2.7) 
0 ( y ) =  for u~>0 
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follows if one distinguishes the cases y >~0 and y < 0. Using (2.6), we find 
that Eq. (2.5) reduces to 

f0 P ~ +  l (~)  = P ( ~ )  d~t  P k ( ~ ' )  
_co 

+ d~' P~(~') p(~ + ~'), k = 1, 2 ..... N -  1 (2.8) 

The initial condition implied by our earlier discussion is 

PI(~) = p(~) (2.9) 

So far the function p could have been arbitrary. If one now uses the 
special form (1.2), one readily shows by induction that the solution is 

f � 8 9  ( -  � 8 9  r for ~ < 0  

Pk(~) = (211 _ _ :) ]e  for ( J~ -r r k = 1, 2,..., N 
(2.1o) 

For  k ~ oo the distributions (2.10) approach a limit P given by 

p ( r  for r  

~e- ~ for ~ > 0  
(2.11) 

Having found this solution, we can now directly determine the average 
ground-state energy. It suffices to notice that upon using successive 
applications of the relation (2.2a) and the definition (2.3), as well as the 
fact that El = 0, one can write the ground-state energy EGN of the total 
system as 

E~ - min(E 1 , E ~ 

= E 1 + min(0, - ~N) 

= m i n ( E ~ - l , E ~  l ) + m i n ( 0 , - ~ N )  

N 
= ~ m i n ( 0 , - ~ j )  (2.12) 

j ~ l  

One can therefore calculate the average ground-state energy per site eN G as 

N 
e~=_N 1 ~ d ~ P ~ ( ~ ) m i n ( O , - ~ )  (2.13) 

k = l  co 
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Since in the limit k --, oo the distributions Pk tend to a limit P, the average 
ground-state energy per site in the thermodynamic limit becomes 

e G= lim eox 
N ~ o o  

= d~ P(~) rain(O, - ~) (2.14) 
oo 

Inserting now the explicit functions (2.10) and (2.11) in (2.13) and 
(2.14), one finds that 

1)N7 e o x = - 2 - 2 N - ~ [ 1 - ( - ~  , ,  N = l , 2  .... (2.15a) 

e ~ = - ~- (2.15b) 

the latter being the result announced in the introduction. The equations 
(2.15) are consistent with the intuitive notion that systems with odd N 
should have a slightly lower average ground-state energy per site than 
systems with even N, and that for finite N the average ground-state energy 
per site is slightly lower than the limit value eG= -2/3 .  

3. PARTICLE D E N S I T Y  A N D  ON-S ITE  E N E R G Y - D E N S I T Y  
CO R R ELATIO N 

3.1. Part icle Density  

We shall denote the ground-state configuration as (cr~ ~ cr~ ..... ~ ) .  The 
G a k are functions of the set of random levels (el, e2 . . . . .  ~ ;u)"  Obviously the 

ground state must be built up of two types of sequences, 01 and 011" the 
particle interaction interaction forbids the occurrence of two successuve O's 
(occupied sites), and if three consecutive l's (empty sites) occurred, the 
energy could always be lowered by changing the middle one into a 0. 

The local particle density p ~ ( k )  at lattice site k is the analog of the 
local magnetization for the Ising chain. It is defined as 

p~ ) = 1 -ak,~ k =  1 ..... U (3.1) 

where the overbar indicates an average over all (el ..... eN). In this section 
we shall calculate pox(k). We begin by defining E ~ (for a =  0, 1) as the 
minimum energy of the system subject to the condition that cr k = a. Clearly, 

G is equal to the fraction of all energy level sets (e:, ~2,---, sN) for which E 1 % 
is less than E ~ Explicitly, 

- -  cO N 

o - G - f  k - l-] dqp (~ j )  0(E~ k =  l ..... N (3.2) 
- - ~ j = l  
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The answer for the spcial average cr~ follows immediately from the 
results of the previous section, since it is equal to the probability of ~N = 

1 0 E N - - E  N being negative. From the probability distribution PN(~N) given in 
(2.10) we therefore have that 

I ) N - - l q  

Using (3.1) and the fact that by symmetry pNG(1)= p~(N), we have 

p~(1) = p~(N)= 511 - ( -  1)N] (3.3) 

In the general case k = 2,..., N -  1 the calculation is more complicated. 
Let Eg_ 1 be the minimum energy of the variables a I through a~_ ~ subject 
to a k _ l = a  (which is just the definition of Section 2) and let -~ EN--k 
analogously be the minimum energy of the variables ak+~ through a N 
subject to a~ = a. We can then decompose E ~ and E l as 

E ~ = E l _ l  - -  c k -1- E l _ k  (3.4a) 

E~=min(E~176 ~,E~_~), k = 2  ..... N - 1  (3.4b) 

When subtracting these equations, we find 

E ~ - E ~  - ~ ) +  min(0, -~/), k = 2  ..... N - 1  (3.5) 

where we have defined the differences 

~ = E ~ _ I - E  ~ , 

~I = E I N _  k - -  E ~  ~ ,  k = 2  ..... N - 1  

(3.6a) 

(3.6b) 

The quantities r and ~/ are independent random variables whose 
distributions P~ 1(~) and PN_~(t/), respectively, have been calculated in 
Section 2. Upon using these results in the expression (3.2) for o ak, we find 

ak ~ = -oo d~Pk-l(~) dtlPN k(tl) 

x de p(e) 0 ( - e -  min(0, - r  rain(0, -q t / ) ) ,  
--oo 

k = 2,..., N -  1 

(3.7) 

After working out the theta function in a way analogous to (2.6), using the 
explicit distribution (1.2) for p(e), carrying out the integration over e, and 
using (3.1), we obtain the intermediate result 

p~(k )= f  d~ e_~({)f  dtlPN_~(~)O({)O(tl), k = 2  ..... N - 1  

(3.8) 



1D Interacting Lattice Gas 1243 

where we introduced the abbreviation 

O(x) = O( -x )  + O(x)e x (3.9) 

After substitution of (3.9) into (3.8), one easily performs the ~ and q 
integrations and finds a final results for p~(k), which also covers the special 
cases (3.3), namely 

p G ( k )  = 4[- 1 1 k 1 ) N - - k +  1 ] ,  - ( - ~ )  ] [ 1 - ( - -  k= l ,Z , . . . ,N ,  N = l ,  2 .... 

(3.10) 

Hence the bulk density is 

pG_= lim pGN(k)=4/9=0.444... (3.11 
k ~ o o  

N k ~ c o  

which is the result (1.Ta). It shows that the ground-state configuration is 
different from the maximum density configuration, which has p = �89 

Another result of interest that can be derived from (3.10) is the density 
G Pbound(k) near one of the system boundaries, 

P~ound(k)--= lim p~(k) = 4[I  - ( -  �89 
N ~ o o  

(3.12) 

The number of excess particles nexc near one boundary therefore is 

ne,,c-- ~ [p~ouna(k)--p~]=4/27 (3.13) 
k = l  

Furthermore, the total density of the finite system is 

N 

p~=-N-' ~ p ~ ( k ) = 4 + ~ N  ' + O ( 2  --~') (3.14) 
k = l  

The finite-size correction is, up to terms that vanish exponentially for 
N ~  Go, equal to 2nexc/N, and therefore is entirely due to the two boun- 
daries. 

3.2. O n - S i t e  E n e r g y - D e n s i t y  Cor re la t ion  

Suppose the potential - ~  at the site k has the value -~.  We wish to 
find the probability fGN(k; e) that this site is occupied by a particle. The 
expression to be calculated is 

G k '  - -  f n (  ,e)=6(ek--e)(1 ~ ) / 6 ( s k - e ) ,  k 1 ..... N (3.15) 
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in which the numerator is the probability that both ek = e and site k is 
occupied. The evaluation of (3.15) proceeds along the lines of the previous 
subsection. After the integration over e~ one obtains the intermediate result 

f~ f~ 
- - o ( 3  o7) 

x [0(-~ + ~) 0(~) 0(-~) + 0(-~ + ~) 0(- ~) 0(~) 

+ 0 ( - e  + ~ + ~/) 0(~) 0(r/)], k = 2  ..... N - 1  (3.16) 

Upon using the expressions (2.10) for Pk i and PN It, one can perform 
the integrations over ~ and r/. The cases k = 1 and k = N again require 
separate consideration. 

We give the final result only for a site k deep in the bulk: 

f o ( ~ ) _  lira fGu(k;e)=l--4(2+e)e ~, e>~O (3.17) 
N k ~  

For e ~ ov the quantity fG(e)  approaches unity, as expected: sites with 
very low potentials are occupied with a probability close to one. Finally, 
one can verify with the aid of (3.17) that 

ffdee -~: f ~  = p~  (3.18) 

as it should. In Section 5 we compare the function fG(e) to its quenched- 
state analog fo(~).  

4. G R O U N D - S T A T E  PAIR C O R R E L A T I O N  F U N C T I O N  

We wish to calculate the average ground-state particle-particle 
correlation function 

gGu(k,l)==-(1--a?)(1--a~), l<~k<l<<.N (4.1) 

For the special case l = k +  1 the nearest neighbor exclusion condition 
(1 - o ? ) ( 1  ~ - -  O'k + 1 ) = 0 directly gives 

g~(k,k+l)=O, k = 1, 2,..., N -  1 (4.2) 

The general case, however, requires more effort. In Section 4.1 we derive 
the integral recursion relation that constitutes the hard core of this 
problem. It is a nontrivial generalization of the recursion considered in Sec- 
tion 2. In Section 4.2 we solve this new recursion relation and calculate the 
particle-particle correlation. 
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4.1. Reduct ion  to an Integral  Recurs ion Relat ion 

We define the quant i ty  E ~ (where a and z take the values 0 or  1) as 
the min imum energy of  the system subject to the condit ion that  

a k = a, a t = z (4.3) 

Clearly, cr kGatG is equal to the fraction of energy level sets (el, e2,... , eN) for 
which E 1~ is less than the other  three E~ Explicitly, 

G o _ _ f  ~176 N ffk q/ -- l--[ ds p(s  O ( E  1~ - -  E l l )  
o c j =  1 

x O ( E ~  11) O ( E ~ 1 7 6  1 <<,k<l<~N (4.4) 

Hence, in order  to find a k~ it is sufficient to derive from the distribution 
of the e / t he  joint  probabil i ty distribution of the arguments  of  three three 
theta functions. 

It is useful to define E~ ~ k-  1, for k < l -  1, as the min imum energy of 
the sites k +  1 th rough  l - 1  under  the condi t ion (4.3). Using again the 

-~ given in Section 3, we can decompose  E ~ as definitions of  E~. and EN_ k 

" ~ -~ l <~k < l -  l <<,N-1 (4.5) E ~  = Ek + Et ~ -  l + EN-t+ 1, 

Instead of the four variables E ~, we shall now consider only the three 
differences that  occur in Eq. (4.4). In order  to simplify the notat ion,  we 
define 

1 0 
= E~ - E k (4.6) 

~ / = E ~  t+l - E ~  l < ~ k < l - l < ~ N - 1  

:~. = E ~  1 - E~O 

fin = E ~ - E ~176 (4.7) 

7 ~ = E ~ I - E  ~ n = l - k - 1 ,  l < ~ k < l - l < . N - 1  

For  the energy differences in Eq. (4.4) we then find, with the aid of  Eqs. 
(4.5)-(4.7), 

E t ~  - ~ t - k  1--q  

E ~  1 

E ~  - -  E l l  ~--- - - ~  - -  ~)l--k-- 1 

E ~ 1 7 6  ~ - 1 - T t - k - ! - ~ ,  l < ~ k < l - l < ~ N - - i  (4.8) 

822/49/5-6-24 
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The quanti t ies ~ and q are ana logous  to the variables ~j discussed in 
Sect ion2;  they therefore have the probabi l i ty  distr ibutions Pk(~) and 
PN l+ l(r]), respectively. The quantit ies c~n, ft, ,  and 7n are determined by 
ek+~ through ek+,  and therefore have a jo int  probabi l i ty  distr ibution that  
we shall call Qn(~,,  fin, 7n), and which is still unknown.  U p o n  introducing 
all this into expression (4.4), we obtain  

F G G d~Pk(~) d~IPN ,+~(~1) 
( T k  f f  l ---- - ~  - - c o  --  

x d ~ d f i d y Q ,  k l(cqfi, 7) 
o o  

x O ( - ~ - c Q O ( - q - 7 ) O ( - 7 - ~ l - f l - ? ) ,  l < ~ k < l - l < ~ N - 1  

(4.9) 

It is clear that  for the higher correlat ion functions similar relations can be 
written down. For  example,  _G_O_G (with 1 ~< k < l -  1 < m - 2 ~< N -  2) O k 0 l 0 m 

would be represented by an integral involving the functions Qt k 1 and 
Qm l 1" Since the functions pj  are known [Eq.  (2.10)], we could at this 
stage carry out the integrals on ~ and t / in  expression (4.9). It will be more  
convenient,  however,  first to determine the functions Qn and then to do the 
integrals on ~, fi, and 7- 

The  variables E~ * depend on Sk +l ,  ek + 2,'", Sk+,,. One can relate the 
E~ * to the E , ~  ~ (at fixed a and for r, r '  = 0, 1) in the same way as in Sec- 
t ion 2 the E~ were related to the E~' 1- (Note,  however,  that  the energy of 
the site variable constra ined to have the value ~ at the end of the sequence 
is included in the definition of E~, whereas it is not  in the definition of E~*.) 
U p o n  considering the different cases, one finds 

E,~, ~ = m i n (  - sk + ,, + E ~  ~ 1' EnO-1 1) 

E~ ~ = E~I_ 1, 

The initial condi t ion is 

El  1 = --s~ + 1, 

a = 0 ,  1; n = 2 , 3  ..... N - 2  

( 4 . 1 0 a )  

(4.10b) 

By forming the appropr ia te  differences of these relations and using the 
definitions (4.7), one obtains  a recursion relation expressing ~n, ft,, 7n in 

C~n l, f in- l ,  7n 1: 

c~, = min(0,  - s k + , -  ~, 1) 

ft, = rain(0, - -Sk+,  -- f t ,_  1) (4.12) 

7, = 7, 1 + rain(0, -- sk +,  -- e , _  1) -- rain(0, -- ek +,  -- fin 1) 

E ~ ' = 0  for a z = 1 0 ,  01, 00 (4.11) 
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The initial condition is 

el = --ek+l, fi~ =0 ,  71 = - -G+I  (4.13) 

This relation allows us to express Q. in Q._  1 according to 

Q.(~,/~, 7)= dek+. p(ek +.) 
- - o o  

x d~, ldf i ,  ,dy ,  i Q , _ 1 ( o : n _ l , f l , _ , , 7 , _ l )  
c~o 

x 6(~, - c~) 6(ft, - fl) 3(7" -- 7) (4.14) 

in which ~,, /?,, and 7, are given by (4.12). If we substitute (4.12) into 
(4.14), perform the integration on 7, 1, and use (1.2) and (2.6), we can 
cast the integral recurrence in the form 

Q,, + 1( ~, fl, 7) =- dfQ.(:~, fl, V) 

= O ( - e ) O ( - f i )  c l ee -~Q. ( -o : - e ,  - f l - e , y + f i - a )  

+ O ( - a ) b ( f l )  dee -~ dfi' Q . ( - e - e ,  fl', 7 - a )  

fo +6(a)O(-- f i )  dee -~ d~' Q,,(~', - f i - e , y + f l )  
- - o o  

+ ~tc~) ~(P) } & e ~ & '  d~' Q.(~', ~', 7) 
d 0 --oo --oc 

(n = 1, 2 ..... N -  3) (4.15) 

From (4.13) and the explicit form (1.2) of p(e), we find the initial condition 

Ql(a, fi, 7)= 6(~ - 7 )  6(fl) O( -a )e  ~ (4.16) 

This completes the derivation of the recursion relation for Q,. By 
integrating both sides of Eq. (4.15) on 7, one obtains an integral recursion 
relation for the functions ~ d7 Q,(c~, fi, 7); by integrating on both ? and 
fl, one finds a recursion relation closely related to (2.5). 

4.2. So lu t ion  of  the  Recursion Relat ion for  Q .  

It is useful first to point out a symmetry property that the solutions 
Q2, Q3 .... to the recursion relation (4.15) should possess. We define 

(.-= fl. + y . =  E ~ l -  E ~  (4.17) 
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and write Q~ as a function of ~ ,  7,, and ( , :  

Q,(a , ,  7~; ~ ) =  Q,(ct~, ft,, 7,) (4.18) 

Since the e's are all identically distributed, the function Q~ should be 
invariant if in (4.3) we interchange a and ~. In view of the definitions (4.7) 
and (4.17), this corresponds to an interchange of c~, and 7,, while ~ trans- 
forms into itself. Hence, we should have 

Qn(~, 7; ~)=  Q,(7, c~; ~) (4.19) 

This relation is indeed satisfied by the initial condition, which in the new 
notation reads 

Ql(~, 7; ~)= 6(c~- 7) 6(7 - ( )  0(- :~)e"  (4.20) 

The symmetry (4.19) is not obviously conserved by the recyrsion relation 
(4.15), and therefore its conservation will serve as a check on the further 
calculations. 

It is tedious but straightforward to use (4.15) to calculate the first few 
iterates of Q~. One then observes, and can subsequently check by induc- 
tion, that each of them can be written as a linear combination of the 
following basis functions: 

FI( c~, 7; ~) = 6(c~) 6(7) 6(~) (4.21a) 

F2( c~, 7; ~) = �89 6(~ - e) 0(-c~)e ~ + [~ ~ 7] } (4.21b) 

F3(~, 7; 7 )=  0 ( - ~ )  0 ( - 7 )  6 ( ~ -  c~- 7)e ~+~ (4.21c) 

G,(~, 7; ~)= {6(~)0(-7)0(7-~)e"~-("-~)~+ [c~--~7]} 

+ (n -- 2) 0(--c~) 0(--y)  0(c~ + 7 -- r (4.21d) 

x e  "r ~){~+~), n = 2 ,  4, 6,... 

H,(c~, 7; ~)= n-1 6(~-  7) 6(~- c~) O(- c~)e "~ 

+n l(n-1){6(~-~)O(7-a)O(--y)e:+(" 1)~+[c~--~7]} 

+ n l(n - 1) 2 0(a - ~) 0(7 - ~) 0(~ - c~ - 7) (4.21e) 

xe-( , -2)~+(n 1)(:+y), n =  1, 3, 5,... (4.21e) 

Each of these functions has been normalized such that it yields 1 upon 
integration over a, 7, and ~. Furthermore, they are all symmetric in ~ and 7. 
The first few Q, thus calculated are 
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Q1 = H1 

Q2 = G2 

Q3 = ~H3 + ~F1 (4.22) 

Q4 = �89 + 1F2 

05 = ~6H5 + 3F1 + �88 + �88 

In order to find the general Q, it is convenient to calculate the action 
of .Jr on the basis functions. The calculation is again a straightforward 
application of the definition (4.15) of ~.  It is now necessary to distinguish 
F f  and F~ ,  defined as the first and the second terms, respectively, in {.--} 
in (4.21b). Hence 

F2 = �89 + F~- ) (4.23) 

The result for the action of ~ then is 

~FI  = F~ 

~ F  + = �89 + F~ ) 

~ F ~  = F3 (4.24) 

~g3 = �89 + F3) 
1 1 ~G, ,=�89  F l+ �89  , n=2,4 ,6 , . . .  

~Hn=�89 ~(n+l)Gn+l+�89 l ( n - 1 ) F 2 ,  n = 1 , 3 , 5  .... 

Upon taking Ql = H1 as the initial condition, one finds the general solution 

Qn= 2 n+ inH,, + ~E l + (3n_4)2  -~+I]F~ 

+ 4 [ 1 - ( 3 n - 1 ) 2 - " ] ( F 2 + g 3 ) ,  n =  1, 3, 5 .... (4.25a) 

Q, ,=2 - " + l n G " + ~ E l - ( 3 n - 4 ) 2  ~ + l ] ( r  1+4F3) 

+ 41-1 + (3n - 10)2-"]  F2, n = 2 , 4 , 6  .... (4.25b) 

One easily checks that for each Q,, the coefficients of the basis functions on 
the right-hand side of Eqs. (4.25) sum to unity, as they should. 

These results are now to be substituted into (4.9), after which the 
correlation ~ G ak at can be computed directly. It is useful to have the results 
at one intermdiate stage. We therefore definite for any function A(c~, 7; ~') 

x A ( e , ' / ; ~ ) O ( - ~ - ~ ) O ( - ~ - 7 ) O ( - ~ - ~ - ~  ) (4.26) 
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Also using the definition (3.9), we find by straightforward integration 

P1(4, ~)= 0(-4)  0(-~) 

P2(4, ~)= �89 o(~) + 0(-~)  0(4)} 

/~'3(4, q) = 0 ( 4 )  O(t /)  (4.27) 

1~,(~, q)=-n 1[0(--4) O(tl)+O(--tl) 0(4)]  + n - l ( n -  2) 0(4) O(t/) 

/~r.(4, ,7) = o(~) o(~) 

If the results (4.25)-(4.27) are combined and substituted into (4.9), the 
averages with respect to Pk(4) and P N-,+ 1(7) are easily evaluated with the 
aid of 

f~ d4P+.(4) O(-~)=�89189 1] 
- -  o o  

(4.28) 
-j~ d4Ps(4)O(4)--ZEl-(-�89 s = l , 2  ..... N 

(so 

The final result also holds in the special cases k - l -  1 and k = l, and reads 

G G__ a t a, - (1/81){25 + [ 3 ( l - k ) +  5 ] ( -  �89 2 } 

- ( 2 / 8 1 ) { 2 o  - [ 3 ( l -  k )  - 4 3 (  - � 8 9  ~ -  2}  

• E(- �89 + ( -  �89 N-'+2] 
+(4/81){16+ [ 3 ( l - k ) -  13](-�89 '-k 2} 

x(-�89 N-'+k+3, l<.k<~l<.N (4.29) 

The special case of greatest interest is the expression for the particle- 
particle correlation function in the bulk. From (4.1) and (4.29) together 
with the expressions (3.1) and (3.10) we obtain 

g~ - lim gGN(k, k + m) 
k~oo 

N k - - m ~ o o  

x),, = (1/81)[16 + (3m + 5)(_  2 2], m = 0 ,  1,2 .... (4.30) 

which gives (1.10). Alternatively, by taking the limit N - ,  oo at finite k and 
l one easily specializes (4.29) to the correlation between a site k on or near 
the boundary and an other, arbitrary site 1. 

We finally discuss the structure factor in the bulk, which is defined by 

S~ - ~ eiqm[gG([m[)--gO(oo)] (4.31) 
m ~ - - o o  
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Because of the nearest neighbor exclusion, it is to be expected that S~(q) 
will have a maximum near q = ~ .  We therefore consider SG(~+q), for 
which a direct calculation from (4.30) and (4.31) gives 

4 1 
SG(= + q) - 3 [1 + 8 s'n2"'q " ' 2 1  [~ )J (4.32) 

Remarkably, this is (at least in the small-q limit) a pure Lorentzian-squared. 
We have thus confirmed once more the presence of such terms in the 
structure factor of random systems. 

5. P R O P E R T I E S  OF THE Q U E N C H E D  STATE 

In this section we go beyond the study of equilibrium properties. We 
imagine that an initially empty lattice is sequentially filled; each new 
particle is placed on the site with lowest energy still available subject to the 
condition of nearest neighbor exclusion. We shall refer to the jammed state 
obtained when no further particles can be added to the lattice as the 
"quenched state." Obviously, other prescriptions for arriving at quenched 
states are thinkable; the one given here corresponds most closely to an 
infinitely rapid quench from a high-temperature state of near zero density 
to a zero-temperature state of high density. 

One can ask the same questions about the quenched state that we 
studied for the ground state. We limit ourselves to the quenched-state 
density po, the quenched-state energy e Q, and the fraction fQ(e) of sites 
with energy - e  that in the quenched state are occupied. 

At the basis of our results for the quenched state is the work by 
Widom, (4) who considers (4'6) a variety of random sequential filling 
problems. Among these is precisely the one of sequentially placing particles 
on a one-dimensional lattice (but in the absence of a site potential -ek)  
such that nearest neighbor occupancy cannot occur. Widom (4) shows that 
in the final quenched configuration on an infinite linear lattice a fraction 

p q = � 8 9  -2) (5.1 

of all sites is occupied. 
For the system of interest to us, the order in which the sites are filled 1s 

determined by the set of preassigned energies (el,..., EN). But at each stage 
of the filling process any one of the available sites (i.e., sites not yet 
occupied themselves and not having either neighbor occupied) may have 
the lowest energy with equal probability. Therefore, the filling is a random 
process identical to Widom's, and the result (5.1), reproduced in Eq. (1.9a), 
holds independent of the energy distribution p(~). 
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In the limit of an infinite lattice the energy per site e Q of the quenched 
state can be expressed as 

e Q = - de ep(e) fQ(~) (5.2) 
- - o O  

in which the distribution p(e) is still arbitrary. In order to determine fQ(~) 
and e Q, we suppose that the filling process has proceeded to a point where 
a fraction p of all sites has been occupied. There exists, then, an as yet 
unknown value ~(p) such that no sites with energies less than - e ( p )  are 
available. Furthermore, there exists a ~b(p) such that at this point the num- 
ber of available sites is a fraction ~b(p) of all lattice sites. The function ~b(p) 
plays an important role in Widom's calculation, ca) were it is shown to be 
given by 

~b(p) = (1 - 2p)[1 + 1 log(1 - 2p)] (5.3) 

Since all available sites have energies - e k  larger than - e (p ) ,  and since for 
these there is no correlation between their energy and their availability, we 
have that 

fQ(~) = ~(p(~))//'(~) (5.4) 

where p(e) is the inverse function of e(p) and we introduce the abbreviation 

f 
g 

p(~) = &'  p(e') (5.5) 
o o  

We can determine the function p(e) as follows. If an extra density Ap 
of particles is added, this causes e(p) to shift by an amount Ae, which is 
such that 

Ap = - A t  p(e) fQ(e) (5.6) 

[Ae is negative, since the energy - e ( p )  increases]. In the limit Ap---, 0 the 
expression (5.6) leads to a differential equation for e(p) from which with 
the aid of (5.4) the unknown function fQ(e)  can be eliminated. It then 
becomes 

dlog P(e) 1 
fp  = - r  (5.7) 

Upon inserting Widom's explicit result (5.3) for ~b(p) in (5.7), we can 
integrate and obtain the desired relation between e and p as 

P(g) = 1 + �89 log(1 -- 2p) (5.8) 
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We can now combine Eqs. (5.2)-(5.5) and (5.8) to express the 
quenched-state energy per site as 

e Q = - d P ( e )  ee  2cP(~)- t j  (5.9) 

Here the function P(e) is still general. If we make use of the explicit 
expression (1.2) for the distribution of the e's and transform to the 
integration variable u = e -~, we find 

eQ= d u l o g u e  2u (5.10) 

which is Eq. (1.gb). 
Finally, from (5.3) (5.5), (5.8), and (1.2) we obtain for fQ(e) the 

explicit result 

fQ(e)  = e -2e ~, e>~O (5.l l)  

which, in analogy to (3.18), satisfies 

f0~  ~fQ(e )=pQ (5.12) 

Comparison of the large-e expansions of the expressions (3.17) and 
(5.11) shows that, as had to be expected, in the quenched state a larger 
fraction of sites with very low energies is filled than in the ground state. It 
is perhaps surprising that also the sites with energies n e a r  z e r o  have a 
larger probability to be occupied in the quenched than in the ground state. 
Since the ground state has a slightly higher density than the quenched 
state, it follows that the graphs of f ~ ( e )  and fQ(e) must intersect in (at 
least) two points, f ~ ( e )  being larger for an intermediate range of energies. 

6. C O N C L U S I O N  

We have investigated the zero-temperature properties of a one-dimen- 
sional lattice gas of particles interacting via a nearest neighbor exclusion 
potential and placed in a randomly site-dependent external field. The 
model is a special limiting case of the random field Ising chain that was 
studied, in particular, by Nieuwenhuizen and Luck. (1) With the aid of the 
integral equation technique we have determined the ground-state energy 
and density, as well as the energy-density correlation on a state. Further- 
more, we have calculated the pair correlation function; the structure factor 
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was shown to be a squared-Lorentzian, characteristic of random field 
magnets. Our solution makes it possible to calculate analytically all higher 

order correlations by the evaluation of a multiple integral. Finally, using 
work by Widom, (4) we have compared some of the properties of the 
ground state with those of the quenched state that one obtains by sequen- 
tially occupying the lattice with particles, filling each time the site with 
lowest potential available. 

Although this work shows that many of the ground-state and 
quenched-state properties of this system are well understood, we wish to 
point out that there still remain quantities of interest that are not easily 
calculated within the framework given. Among these are in particular 
quantities that compare the ground state and the quenched state, such as 
the fraction of sites having the same occupation number in both. Our 
knowledge of this simple model problem is therefore not yet complete. 
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